8-1. Refer to Fig. P8-1. Verify that the radii of gyration \overline{r}_x and \overline{r}_y , of the rectangle shown with respect to its centroidal axes are $\overline{r}_x = h / \sqrt{12}$ and $\overline{r}_y = b / \sqrt{12}$. Solution.

8-2. Verify that the radius of gyration for a circle of diameter d with respect to a centroidal axis is $\overline{r} = d / 4$. Solution.

			_								_							_						
			_	_	 					_		 							 					
		_	_		 	-	-	 	 -	_	 -	 		 -				_	 				-	
		-	_	_	 			 	 	_	 	 _		 		 _	 _		 		_		-	
	_	-	_		 	-	-	 	 -		 -	 		 -		 _	 _	_	 	_	_	_	-	
		 _	_		 			 	 	_	 	 	 	 		 _	 _	_	 			_	+	_
		 _	_		 			 	 		 	 	 	 		 	 _	_	 				_	
		 _	_		 			 	 _		 _	 	 	 _	_	 	 	_	 			_		
		 _			 			 	 		 	 		 	_	 	 		 				_	
					 			 	 		 	 		 		 	 		 				_	
					 			 			 	 				 	 		 			_	_	
			_															_						
			_								_							_						
			_									 						_					-	
	_		_		 	-		 _		_	 	 						_	 				-	
		-	_	_	 	-	-	 	 -		 -	 		 -		 _	 _	_	 	_	_		-	
		 _	_		 		_	 	 		 	 	 	 		 _	 _	_	 				-	
	_	-	_	_	 	-	-	 	 -	_	 -	 		 -		 _	 _	_	 		_		-	_
		 _	_		 			 	 	_	 	 	 	 		 _	 _	_	 			\rightarrow	+	_
		 _	_		 			 	 		 	 		 		 _	 _	_	 			_	-	
		 _			 			 	 		 	 	 	 	_	 	 		 				_	
			_																				\rightarrow	
		_	_															_					\rightarrow	
			_																				\rightarrow	
																							\rightarrow	
																							\rightarrow	
																							_	
																							\neg	
																							\neg	\neg
	_		_	_								 						_					\neg	
			_	_														-				-	-	
		_	_													 		_					\rightarrow	

8-3. Refer to Fig. P8-3. Determine the moment of inertia I_x and the radius of gyration r_x of the circular area about the x axis.

8-6. Refer to Fig. P8-6. If the moment of inertia I_x of the rectangular area about the x axis is 7320 in.⁴, determine I_x , of the area about the x' axis.

8-10. 8-10 to 8-17 For each composite area shown in Figs. P8-10 to P8-17, determine the moment of inertia of the area with respect to the horizontal centroidal axis. Solution.

8-16. Solution.

